
 

Transaction-level Modeling of MPEG-2 Video Decode Application 
in SystemC 2.0.1 

Samvit Kaul, Sreekanth M, Junhyung Um, Eui-young Chung,  
Kyu-Myung Choi, Jeong-Taek Kong, Soo-Kwan Eo 

†CAE Center, System LSI Devision, Device Solution Network, Samsung Electronics 

Email: {samvit.kaul, sreekanth.m, euiyoung.chung, kmchoi, jkong, sookwan.eo}@samsung.com

 
 

Abstract — We present our transaction level model of the 
MPEG2 Video Decoder implemented in SystemC 2.0.1. This 
model can serve as a basis for architecture design-space 
exploration, hardware/software partitioning, functional 
validation, and performance evaluation. It can be viewed as a 
typical example of high level modeling in SystemC, and the 
results can be applied to most SystemC based models which 
use blocking threads and dynamic sensitivity as their 
modeling methodology for rapid system prototyping.
 Simulation Speed results are presented in both un-timed 
and timed simulation models of MPEG-2 decoder application 
using various characteristic test streams. Empirical evidence 
is found for the fact that the speed of a timing simulation of 
complex systems using SystemC threads and dynamic events 
depends on the timing parameters of blocking threads. 

I.  INTRODUCTION 
NOW platforms are being defined which include a wide 

assortment of elements from System-level design (SLD): the 
RTL hardware definition, bus architecture, power 
management strategy, device drivers, OS ports, and 
application software. However, to be successful, a platform 
will need more than this. An essential element for enabling 
differentiation will prove to be an advanced systems modeling 
and verification environment. Developers require a variety of 
views of the entire platform from RTL, system models, 
software development models, and real hardware development 
boards. That means, system views must be extendible, 
allowing designers to exploit the advantages of a well-
supported, pre-verified base platform of hardware and 
software IP, while differentiating their own application with 
their own IP. Specifically, each design task has specific 
requirements on methodologies and IP customers will want to 
make extensions to the IP during each stage of their own 
design. 

In addition, at the system-level, availability of software 
becomes critical and it is no longer reasonable for the software 
team to wait for a prototype system. Coverification can move 
the integration schedule forward to the point where RTL is 
available, but this still delays the software integration to a 
point where much of the hardware design is complete. System 
and software designers would still be lacking a common 
environment.  

SystemC provides a solution to this dilemma. It is the 

standard design and verification language that spans from 
concept to implementation in hardware and software and 
which can also be used to develop models.  
One of the key techniques used in this design flow is the 

modeling of the system at the transaction level. Transaction 
level modeling (TLM) is simply a higher abstraction level for 
modeling. Systems modeled in RTL are concerned about the 
hardware details such as pin-level behavior of their system. 
With TLM, it is possible to accurately model many aspects of 
a system at a higher (e.g. Read and Write) level. By using 
TLM we are simplifying the modeling effort and we also gain 
simulation speed.  

In this paper, we present our implementation of the  
MPEG2 MP@ML Video decoder using SystemC 2.0.1. 
Designing such a system, with possible support for multiple 
standards and future proof scalability, performance 
requirements on cost and power, is a non-trivial job. Currently 
the solutions present a staggering range [1]-[5]. The design 
space is huge, and one is forced to look for point solutions 
depending on an possible application area. One approach to 
handle the design complexity is to follow a system-level 
design methodology, which enables design decisions to be 
taken very early in the design stage, and realization of their 
consequences in a rapid prototype.  
The outline of the paper is as follows. In Section II, we 

present a quick synopsis of SystemC, and transaction-level 
modeling.  In Section III, we give a short background on 
MPEG-2 Video. Section IV presents some details on 
transaction level modeling and Section V presents our 
implementation of the transaction level model of MPEG-2 
Video Decoder in SystemC. Section VI presents the results 
and Section VI concludes the paper. 
 

II. SYSTEM BACKGROUND 
SystemC [6]-[8] is an object oriented C++ library that 

enables a designer to specify, implement and verify a design 
that spans from concept to implementation in hardware and 
software. The Open SystemC Initiative (OSCI) is a 
consortium of major EDA and IP companies that contributes 
to and governs SystemC development and distribution. 
SystemC users may develop models using SystemC along 
with standard ANSI C++ compilers.  In recent times, SystemC 
has emerged as the de-facto standard for system level design 

899



 

efforts, replacing hitherto propriety solutions. 
 

 
Figure 1 Basic Concepts in SystemC and associated Syntax : 

(a) A port ; (b) An Interface ; (c) A Module with a port ; (d) A 
Channel implements an interface MPEG Video 

In SystemC a system is modeled as a collection of modules 
connected together in a netlist. The modules may be 
hierarchical, that is the modules may themselves contain a 
netlist of modules. A module contains processes, which 
define its behavior and provide a method for expressing 
concurrency. Also a module contains ports, through which the 
module communicates with the external environment.  

Each port has an associated interface. The interface defines 
the valid communication patterns available to a module 
through its port. A module can only invoke the 
communication methods that are available in the interface 
associated with its port. 

 

 
 

Figure 2 A Simple Netlist in SystemC 

A channel implements one or more interfaces. A module 
port is bound to a channel, which implements its interface. A 
netlist of modules is formed by binding all module ports to 
appropriate channels, thereby making it possible for the 
modules to communicate to each other.  

A toplevel netlist can be executed in simulation by the 
SystemC Simulation Kernel, which implements an event-
driven simulation framework. Events are first class objects 
available to the SystemC programmer, which can be used for 
explicit module synchronization. SystemC simulation is not 
started until all module ports are properly connected and 
initialized. The visual syntax used to describe these 
architectural SystemC structures is depicted in Figure 1. A 
Simple module netlist with the module ports bound to a channel is 
depicted in Figure 2. 

.  

III. MPEG VIDEO 
The Moving Picture Experts Group (MPEG) 

standardization is responsible for creating the most popular 
standards for digital audio-video compression [9]-[11].  

MPEG-1, defined audio and video compression coding 
methods and a multiplexing system for interleaving audio and 
video data. MPEG-1 principally supports video coding up to 
about 1.5 Mbit/s giving quality similar to VHS and stereo 
audio at 192 bit/s. 

The MPEG-2 standard is capable of coding standard-
definition television at bit rates from about 3-15 Mbit/s and 
high-definition television at 15-30 Mbit/s. MPEG-2 extends 
the stereo audio capabilities of MPEG-1 to multi-channel 
surround sound coding. MPEG-2 decoders also decode 
MPEG-1 bitstreams. MPEG-2 aims to be a generic video 
coding system supporting a diverse range of applications. 
 

 
Figure 3 The MPEG Video System 

The MPEG standard achieves compression by exploiting 
the spatial and temporal correlation between the pixels values 
in a digital video signal. In addition, it also exploits the 
psycho-visual redundancy as perceived by the human visual 
system. The human eye has a limited response to fine spatial 
detail, and is less sensitive to detail near object edges or 
around shot-changes. Consequently, controlled impairments 
introduced into the decoded picture by the bit rate reduction 
process should not be visible to a human observer. 

Two key techniques employed in an MPEG codec are intra-
frame Discrete Cosine Transform (DCT) coding and motion-
compensated inter-frame prediction.  

IV. TRANSACTION LEVEL MODELING(TLM) 
The fundamental concept in SystemC modeling is the 

separation of module behavior, and module communication. A 
designer could independently focus on the behavior of the 
module, or the communication systems used by the module, 
and still be able to integrate seamlessly the two together. In 
the parlance of object-oriented engineering, we say that the 
module communication is abstracted to an interface rather 
than to an implementation. SystemC Channels are abstractions 
for module communication and SystemC Module Processes 
are abstractions for module behavior. 

Transactions are high-level communication abstractions 
provided to modules through a port-interface. The high level 
is in the sense that the focus is not on pin-level as is done in 
typical hardware design, but rather the focus is on protocol 
objects (address, data, handshake, control signals) and 

DCT Q VLC

IQ MC

ME

Fram IDCT 

Process Channel

Module 
Port 

Interface Port 

Process

Module

M1 M1 

(a (b

(c) (d

900



 

protocol semantics (blocking, non-blocking, cacheable, 
arbitrated etc.). 

Transactions in SystemC 2.0 are Channel implementations 
of specific interface functions. The functions typically 
implement a communication mechanism (peer-to-peer, shared 
memory, bus interconnect, etc.) and need to be called in a 
specific way by the module, which intends to use them.  

V. TLM OF MPEG-2 VIDEO DECODER 
We modeled the MPEG-2 decode application as a 

Macroblock-Pipeline. The modules are independent, possibly 
concurrent entities, communicating as a dataflow network 
[12]-[13]. There is no explicit synchronization between 
modules except wherever necessary by the algorithm (e.g. 
Header Parsing and Variable Length decoding). This enables 
us to make all the inherent parallelism of the algorithm 
explicit in the model, which can be exploited by a system 
architect in an implementation. Since we are concerned with 
modeling a system-level application model, we do not force a 
module behavior (Hardware/Software) or a communication-
architecture (e.g. a shared bus) in the model. This allows for 
orthogonal design choices between module behavior and 
communication in design space exploration. Following are the 
details of the model in execution. The inter-module-
communication in the macroblock pipeline is implemented as 
blocking read-write transactions. 
BitstreamInput is a hierarchical channel which implements 

the BitstreamInputInterface providing the well-known 
MPEG primitives getbits(n), showbits(n), flushbuffer(), and 
next_start_code(). HeaderParser module uses BitstreamInput 
to fetch the compressed bitstream and parses it for the header 
and extension information as described in the standard. As 
soon as the headers are parsed, HeaderParser triggers the 
VLCParser module to start the variable length decoding of the 
current macroblock. All InterModuleCommunication in the 
macroblock-pipeline happens through a hierarchical channel 
which implements many interfaces which define 
communication between individual modules. For example, the 
communication between HeaderParser and VLCParser is 
called HeaderVLCInterface and provides mechanism for 
communication of all the parameters and control information 
from HeaderParser to VLCParser. Similarly, there are other 

interfaces like VLCIQInterface, VLCMCInterface, 
IQIDCTInterface etc. 

Once the VLCParser finishes decoding the current 
macroblock, it forwards the relevant data and control 
information to InverseQuantization module and 
MotionCompensation Module.  The InverseQuantization in 
turn forwards data and control to the InverseDCT module. A 
macroblock is reconstructed in the FrameBuffer module, 
which accepts relevant data and control information from 
MotionCompensation and InverseQuantization modules. The 
FrameBuffer module can optionally output the reconstructed 
frame to a target (X-Display,  Unix File, a SDRAM model). 

Each module has one or more SC_THREAD processes 
which implement the behavior of the module. Typically, a 
module process makes a blocking interface call to input data, 
processes the data, and makes a blocking call for outputting 
the data. In case there is no serial data-dependency between 
modules, they are concurrent in execution. This is depicted in 
the pseudo-code below: 

 
//Typical Module Thread Process 
while(1) { 
 ModulePort->getdata();    //blocking call 
 ModulePort->getcontroldata(); //blocking call 
 ProcessData(); 
 if (TimedMode){ 

wait(ProcessCycleCount); 
} 

 ModulePort->putdata();    //blocking call 
 ModulePort->putcontroldata(); //blocking call 
} 
 
The inter-module-communication transactions are 

implemented as blocking interface methods inside the 
hierarchical channel, and uses dynamic sensitive events for 
achieving blocking effects. Dynamic sensitivity of threads to 
events, ensures that the blocked threads are not un-necessarily 
called by the simulation kernel, thereby providing an efficient 
scheme for simulation. 

The threads can have timed or un-timed operation 
depending on a command line configuration parameter, which 
controls whether the module blocks for a predetermined 

.  

 
 
 
 
 
 
 
 
 
 

Figure 4 Transaction-level Model of MPEG-2 Video Decoder 

BitstreamInput IQ 

MC 

Frame  
Buffer 

IDCT

HeaderParser 

Inter-module  
Communication 

VLCParser 

901



 

number of cycles accounting for module behavior. Currently, 
we specify the following timing parameters in the timing 
mode: 

• PerByteHeaderParserTime specifies the 
processing time for each byte of a MPEG Video 
Header. For example, if the sequence header size 
is 12 bytes, then it would consume 
(PerByteHeaderParser * 12) Cycles to process the 
sequence header in simulation. This makes the 
processing time data-dependent. 

• PerBitVLCParserTime specifies the processing 
time for each bit of a MPEG Macroblock. For 
example, if the macroblock size is 150 bits, then it 
would consume (PerBitVLCParser * 150) Cycles 
to process the macroblock in simulation. This 
makes the processing time data-dependent. 

• PerBlockIQTime specifies the processing time for 
a 8x8 block Inverse Quantization. For a given 
sequence chroma format, the total processing time 
for a macroblock is (Block_Count * PerBlockIQ) 
cycles. 

• PerBlockIDCTTime specifies the processing time 
for a 8x8 block Inverse Discrete Transform. For a 
given sequence chroma format, the total 
processing time for a macroblock is (Block_Count 
* PerBlockIDCT) cycles. 

• PerMBlockForwardMCTime   specifies the 
processing time per macroblock Forward Motion 
Vector Prediction. 

• PerMBlockBackwardMCTime   specifies the 
processing time per macroblock Backward Motion 
Vector Prediction. 

• PerMBlockReconTime   specifies the processing 
time per macroblock reconstruction, saturation, 
and post-processing. 

Specifying different timing parameters specifies different 
points in a design–space, which can be traversed and explored 
for a particular cost-performance tradeoff. Figure 4 captures 
the essence of these details. 

 

VI. EXPERIMENTAL RESULTS 
The model as described was implemented using the OSCI 

SystemC 2.0.1 library, compiled with GCC 2.95.2 at –O3 
compiler optimization level and simulated on a Sun-Blade 
1000 machine. The model borrows a lot of code from an open-
source public-domain, C based MPEG-2 Video Decoder, 
mpegdecode [14]. Substantial portion of the code was 
refactored and freshly implemented. Most of the refactoring 
comes from removing the global data structures of 
mpegdecode, and creating the SystemC modules and channels. 

Two sets of timing parameters were used as example 
implementations in HW/SW combinations. Here are the two 
sets: 

Set 1 

Timing Parameter Value (Cycles) 
PerByteHeaderParserTime 1.0 
PerBitVLCParseTime 0.25 
PerBlockIQTime 10 
PerBlockIDCTTime 10 
PerMBlockForwardMCTim
e 

10 

PerMBlockForwardMCTim
e 

10 

PerMBlockReconTime 2 
 
Set 2 

Timing Parameter Value (Cycles) 
PerByteHeaderParserTime 1.0 
PerBitVLCParseTime 0.125 
PerBlockIQTime 100 
PerBlockIDCTTime 10 
PerMBlockForwardMCTim
e 

100 

PerMBlockForwardMCTim
e 

100 

PerMBlockReconTime 50 
 
Four MPEG-2 streams were used to test the simulation 

speed. All four streams were in the chroma format 4:2:0. The 
details of the streams are tabulated. 

 
Video 
Sequence 

Total 
Number Of 
Frames 

Frame Size Picture 
Sequence 

Trees 61 720 x 480 Interlaced 
Hop 31 720 x 576 Progressive 
Ballerina 60 352 x 224 Mixed 
Conference 20 720 x 576 Progressive 

 
Speed measurements were made using the UNIX time 

command. In the following table the User Time is reported in 
seconds. The three simulation options of the model are 
untimed mode (UT), timed mode with timing parameters as 
set-1 (TM-1), and timed mode with timing parameters as set-2 
(TM-2). 

 
 Trees Hop Ballerina Conferenc

e 
UT 40 24 9 15 
TM-1 79 47 16 26 
TM-2 184 106 39 65 
 
This empirical data suggests that for sequences of 

comparable dimensions (Trees, Hop, Conference), the un-
timed simulation runs at approximately 1.3 frames per second, 
whereas for the sequence with approx. five times smaller 
dimensions (Ballerina), the simulation runs at 6.7 frames per 
second, i.e. 5x faster. Therefore, we can expect an un-timed 

902



 

simulation of a HDTV (1920 x 1152, 40 frames per second) 
application to run at approximately 0.24 frames per second, 
which translates to a throughput of approximately 170 seconds 
for simulating 1 second of video. 

On the other hand, the simulation performance of timed 
model is dependent on the timing parameters. For the data of 
set-1, we see that the throughput for 1 second of HDTV video 
is approximately 350 seconds. Similarly, for set-2, the number 
comes to approximately 750 seconds. Assuming that set-1 and 
set-2 represents the end points of a design space to be 
explored, we can interpolate to estimate our simulation effort 
for performance evaluation of design options. 

VII. CONCLUSION 
We conclude that SystemC presents a convenient method of 

modeling complex applications for design space evaluation. 
The simulation kernel gives good results for un-timed 
simulation model. However, for timed models, one needs to 
be careful because the simulation speed depends on the timing 
parameters, which control the triggering of the threads in the 
system. If there is large variation in the timing parameters, the 
simulation speed is appreciably affected. 

REFERENCES 
[1] Hiroshi Okano, et. al, “An 8-Way VLIW Embedded 

Multimedia Processor Built in 7-layer Metal 0.11um 
CMOS Technology”, IEEE International Solid State 
Circuits Conference, 2002. 

[2] M. Sima et. al, “MPEG Macroblock Parsing and Pel 
Reconstruction on an FPGA-augmented Trimedia 
Processor”, IEEE International Conference on Computer 
Design, Austin, Texas, 2001. 

[3] M. Ikeda et. al, “An MPEG-2 Video Encoder LSI with 
Scalability for HDTV based on Three-Layer Cooperative 
Architecture”, Design Automation and Test in Europe 
Conference, 1999. 

[4] Edgar Holmann, Toyohiko Yoshidam Akira Yamada, 
Shin-Ichi Uramoto, “Single Chip Dual Issue RISC 
Processor for Real Time MPEG-2 Software Decoding,” 
Journal of VLSI Signal Processing, 18, 1-13, 1998. 

[5] Masaki Toyokura, Hisahi Kodama, et. al, “A Video DSP 
with a Macroblock Level Pipeline and a SIMD Type 
Vector Pipeline Architecture for MPEG2 CODEC,” IEEE 
Journal of Solid State Circuits., Vol. 29, No. 12, 
December 1994. 

[6] Open SystemC Initiative (OSCI) Website: 
http://www.systemc.org. 

[7] Thorsten Groetker, Stan Liao, Grant Martin, Stuart Swan, 
“System Design with SystemC”, Kluwer, 2002. 

[8] Functional Specification for SystemC 2.0, January 2001. 
Available from OSCI at http://www.systemc.org.  

[9] International Standard ISO/IEC IS-13818: Generic 
Coding of Motion Pictures and Associated Audio, Part 2: 
Video. 

[10] International Standard ISO/IEC IS-11172: Generic 
Coding of Motion Pictures and Associated Audio, Part 2: 
Video. 

[11] P.N. Tudor, “MPEG-2 Video Compression”, Electronics 
& Communication Engineering Journal, December 1995. 

[12] E.A.de.Kock G. Essink, et. al, “YAPI: Application 
Modeling for Signal Processing Systems,” Proceedings of 
the Design Automation Conference, June 2000 

[13] Pieter van der Wolf, et. al, “An MPEG-2 decoder case 
study as a driver for a system level design methodology”, 
Proceedings of the seventh international workshop on 
Hardware/software co-design, Rome 1997. 

[14] MPEG Software Simulation Group, “MPEG-2 Video 
Decoder”, Version 1.1, June 1994 

903




